
Spring 2018 Operating Systems Qualifying Exam

CODE_______________________________

This is a closed book test.

Correct, clear and precise answers receive full marks

Please start a new page for each question.

There are five (5) questions, 20 points each

1 | P a g e

Spring 2018 Operating Systems Qualifying Exam

1. We wish to increase the size of a RAID array by adding one new disk. Is it

easier to add the new disk if the array’s RAID level is 4 or 5, and why? You

may assume the new disk contains all zeroes.

Answer: RAID 4. Since the parity disk is the same, adding another data

disk, will not affect the resulting value of the parity sector. Since the

added sector is 0, then there is no need to calculate the parity value. The

sectors are then added to the free list and any updates to the sectors

would update the parity sector. In RAID 5, the position of the parity sector

is distributed which means that shuffling of the parity sector would have

to be made. Thus, effectively, at least the size of the new disk of data

would have to be shuffled.

2. In a paged operating system, when a page is to be brought into main

memory from disc, it must be placed in a page frame. If there is no empty

page frame available, a page must be evicted from main memory to make

room for the new page. The choice of which frame to select is made by a

page replacement algorithm. Describe, excluding the working set model,

two page replacement algorithms. Please include the performance

challenge of your two examples.

Answer: There are several answers to include, Least Recently Used, FIFO

(very bad), LIFO (usually better than LIFO), Working set, CLOCK,

3. Write a Producer/Consumer solution using a non-counting semaphore and

threads. You should have a shared global buffer where data is placed for

production and taken when consumer. You are to ensure that all race

conditions are addressed while not blocking processes that don’t need to

access the shared resources.

2 | P a g e

Spring 2018 Operating Systems Qualifying Exam

semaphore notfull = 1;

semaphore notempty = 0;

semaphore buffer_mutex=1;

size=0;

procedure producer()

{ while (true)

 { item = produceItem();

 down(notfull);

 down(buffer_mutex);

 putItemIntoBuffer(item);

 size ++;

 if (size!= BUF_SIZE) up(notfull);

 up(notempty);

 up(buffer_mutex);

 }

}

procedure consumer()

{

 while (true)

 {

 down(notempty);

 down(buffer_mutex);

 item = removeItemFromBuffer();

 size--;

 if (size > 0) up(notempty);

 up(notfull);

 up(bufer_mutex);

 consumeItem(item);

 }

}

3 | P a g e

Spring 2018 Operating Systems Qualifying Exam

a) What sort of possible speedup will you get when utilizing User-Level

Threads?

No real possible speed up because User-Level threads runs on one

processor. Since there is no I/O, non-blocking I/O is immaterial

b) What sort of possible speedup will you get when utilizing Kernel-Level

Threads?

With Kernel threads, it is possible to get speed up. This now depends on

the Operating system and its process scheduling algorithm.

4. Consider a system with 3 physical frames of memory that is given the

following page memory reference sequence:

 1, 3, 6, 7, 1, 3, 6, 7, 1, 3, 6, 7

 What is the number of page faults that would occur for each of the

 following page replacement algorithms?

 a. An optimal page replacement algorithm

 b. LRU

 c. 2nd chance clock replacement

Answer:

a) FRAME A: 1

 FRAME B: 3

 FRAME C: 6, 7, 6, 7

 6 faults

4 | P a g e

Spring 2018 Operating Systems Qualifying Exam

b) FRAME A:1, 7, 6, 3

 FRAME B: 3, 1, 7, 6

 FRAME C: 6, 3, 1, 7

 12 faults

c) FRAME A: 1, 7, 6, 3

 FRAME B: 3, 1, 7, 6

 FRAME C: 6, 3, 1, 7

12 faults – because when we do second chance, we clear the access bits

and nothing resets them

5. A system is composed of four processes, p1 through p4, and three types of

consumable resources, R1 through R3. There is one unit each of R1 and R3

available.

 p1 requests a unit of R1 and a unit of R3.

 p2 produces a unit of R1 and a unit of R3 and requests one unit of

R2.

 p3 requests a unit of R1 and a unit of R3.

 p4 produces a unit of R2 and requests one unit of R3.

Show the consumable resource graph to represent the system state.

Which, if any, of the processes are deadlocked in this state?

 In a consumable resource graph edges from process to resource

indicate a request, edges from resource to process are producer

edges.

 The system will stall. There are 3 requests for R3, yet there is only

2 total units of R3. Ultimately p4 will stall waiting on R3.

5 | P a g e

